VIBRATION MECHANISMS IN THE SOLID PHASE OF
A FLUIDIZATION BED
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The phenomenon of periodic vibrations in a fluidization bed is analyzed in the light of two
mechanisms of interaction between solid phase particles. Equations are derived for the fre-
quency, the wave velocity, and the wave vector of periodic-bed vibrations.

The authors consider here the vibration of solid phase particles in a fludization bed resulting from
collective interaction and direct collisions between particles. A study and analysis of the motion of the
solid phase in a fluidization bed reveals that individual particles and clusters ofparticles vibrate with dif-
ferent amplitudes and frequencies. Altogether, according to the experimental studies in [5] and [6], the
vibration spectrum of solid phase particles is continuous and covers a wide range. As to the causes and
nature of vibrations excited and sustained in the solid phase of a fluidization bed, they evidently cannot be
attributed to any single mechanism but rather to an interplay between several different processes. Among
the various vibratory processes occurring in a fluidization bed, one can single out a few types of processes
as, for instance, the "shaking" small-amplitude high-frequency vibration of individual particles and vibra-
tions resulting from an interference between particle clusters.

The interference between individual particles can result not only from a direct momentum transfer
from one to another during collisions but also from a meshing of the hydrodynamic boundary layers which
surround such particles [1], At a sufficiently high stirring rate in the solid phase and high relative vel-
ocities of the phases, furthermore, the individually moving particles leave turbulent trails which can also
interfere with one another as well as with the solid phase particles, The breakaway of turbulent vortices
during a fast motion of solid phase particles can also result in a particle-vortex type interference. These
interference modes belong to the near-range category, and the kinetics equation [2]
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will account for them in a statistical description of the solid phase motion. The solution to this equation is,
to the first approximation,
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where 6§ = mD/A,. For an expanding fluidization bed, when n « 6/7d®, function n(z) must satisfy the equa-
tion
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The solution to Eq, (3) is the following function

n(z):noexp{lz)é—(l——%wﬁ)z]. (4

Function n(z), when expressed in this form, is an analog of the barometric formula for a fluidization bed.
A formula like (4) was proposed in [3] and exponential factor was evaluated experimentally,

By extending the analogy with the kinetic theory of gases, as far as Eq. (1) is concerned, in the case
of elastic collisions between particles one may expect that vibrations of the acoustic kind are propagated
through the fluidization bed. The velocity of these acoustic waves is

o / 29 l/21) )

Energy is transmitted here by sequences of elastic collisions between solid phase particles in the
fluidization bed. The motion of individual particles in the bed should.be vibratory with small amplitudes
and high frequencies.

The quantity Ay can be determined from the expression

D ﬂwf‘)”l Inn—Inn,

lzzm—(l-—
g g 2

For a bed of d = 2,5-4.0 mm particles fluidized with air at 2.5-5.0 m/sec velocity, the value of A, is some-
where within 0.012-0.020 sec™l. The diffusivity D under these conditions, in the velocity space, has been
determined experimentally (5, 6] and found to range from 15 to 40 cm?/sec™3. Inserting these values into
(5) yields the following estimate for the velocity of vibrations in such a fluidization bed:

(6)

v ~0.4—08 m/sec, {7
The frequency of vibrations is estimated from the relation

*Nﬁ:
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where ! denotes the characteristic linear dimension of the fluidization bed, Under the given conditions £*
ranges from § to 16 Hz,

We note that these estimates for v¥ and f* agree closely with the maximum velocities and vibration
frequencies of individual particles observed in the experiments [5, 6] concerning the motion of the solid
phase in a fluidization bed.

A consideration of far-range hydrodynamic interference forces in a fluidization bed will explain the
mechanism by which collective vibrations of solid phase particles are brought about. The equation of the -
particle distribution function in the phase space of coordinates and velocities can be derived with the aid
of the concept of a self-adaptive field [71:
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where ajkuy + b; is the self-adapted hydrodynamic interference force, When 6 = 0 or when

f=ndu—ud) (10)
the phase velocity of collective vibrations in a fludization bed ig determined from the relation
® k<<u>
B RI—A) (11)
where
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The generalization of (11) for states with 0 = 0 is given in [7],
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The phase velocity of collective vibrations under given conditions can be estimated on the basis of
relation (11), considering that the magnitude of A is then of the order of 3* 10'2. Formula (11) yields now
the phase velocity of collective vibrations of the order of 3-8 cm/sec in a coordinate system referred to
the center of inertia of the solid phase particles.

During the fluidization of dielectric particles in industrial apparatus, static charge accumulates which
can become quite appreciable. The electric interference between particles has then a pronounced effect on
the vibratory motion of solid phase particles. The kinetics equation of the distribution function which takes
into aceount not only hydrodynamic but also electric interference will be
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The method in [8] of analyzing vibrations in multiparticle systems yields, in the linear approximation, a
relation between the frequency of collective vibrations and the wave vector, It is assumed here that vibra-
tions occur near a state corresponding to a distribution function of the (10) kind. The coordinate system
has been selected so that the fluid comes to a standstill at infinity. The corresponding dispersion equation
is
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When w—k <u >0, the solution to Eq. (13) can be expressed in the form
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Relations (13) and (14) have been derived under the assumption that the dynamic viscosity of the fluidizing
agent is rather low and that, consequently, the damping of collective vibrations is weak. From {(14) one
can obtain formulas for the phase velocity w/k and the group velocity dw/dk of propagation of collective
vibrations through a fluidization bed of electrically charged particles (in a coordinate system referred to

the fluid phase):
k z
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It is worthwhile to examine the extreme cases of longwave and shortwave vibratory processes. In-
troducing the parameter
o (k<u>)" A*
8(1 — 42

>

we have for longwave vibrations ® <« 1 when A «< 1 and
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while for shortwave vibrations ® > 1 when A «< 1 and
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When g — 0, velation (14) becomes (11)., When <u> =0, relation (14) is identical to the expression
for the Langmuir frequency [8] modified by a correction for the associated mass:

Q_._
yi—4

As an example, we will consider an air-fluidized bed of charged particles d = 1 mm in diameter and
with a density pg = 2000 kg/ m3, Let the charge of a single particle be g ~ 107! C, which corresponds to a
particle potential of about 100 V. Such potentials are attained, for instance, during the fluidization of di-
electric particles in acrylic glass columns. Under these conditions the value of parameter A is of the or-
der of 1073 and the frequency € is of the order of 10 sec™!. The phase velocity of the studied longwave vi-
brations can be determined from formula (16), if one congiders that the wavelength is of the same order of
magnitude as the characteristic linear dimension of the fluidization bed (say, 5 cm). In this case, w/'k
~10 cm/sec in a coordinate system referred to the solid phase,

0=+

A peculiar feature of the studied collective vibrations in a fluidization bed is that they are propaga-
ted only in the mean direction of the fluidizing agent flow., Only Langmuir vibrations at a frequency accord-
ing to (18) can be propagated across the flow at (k<u>) =0 as well ag at <u> =0,

NOTATION

is the diffusivity, in the velocity space;

is the mass of a solid phase particle;

is the acceleration of free fall;

is the diameter of a solid phase particle in a fluidization bed;
is the wave velocity;

is the wave frequency;

is the characteristic linear dimension of a fluidization bed;
is the vector of mean velocity of fluidizing agent flow;

is the velocity of solid particles;

is the mean velocity of solid particles;

is the wave vector;

is the electric charge of a single solid phase particle;

is the dynamic viscosity of fluidizing agent;

is the parameter, simulating the hydrodynamic "temperature” of a fluidization bed [2];
is the density of fluidizing agent;

Ps is the density of solid phase;

I is the collision integral;

w is the vibration frequency;

n is the concentration of solid phase particles;

Ay Ay as in [2],
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